THE SYNTHESIS AND SOME PROPERTIES OF TRI-n-BUTYL-PHOSPHINE-π-CYCLOPENTADIENYLNICKEL MERCAPTIDES

MASAO SATO and TADAO YOSHIDA

Department of Chemical Engineering, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo (Japan) (Received December 14th, 1971; in revised form January 24th, 1972)

SUMMARY

Complexes of the general formula π -C₅H₅Ni[P(n-C₄H₉)₃]SR (I) (where R is H, CH₃, C₂H₅, n-C₃H₇, n-C₄H₉, CH₂C₆H₅, CH₂COOH, and COCH₃) and π -C₅H₅Ni[P(n-C₄H₉)₃]SC₆H₄X (II) (where X is H, *p*-CH₃, *p*-Cl, *p*-COCH₃, and *p*-NO₂) have been prepared. Their IR and NMR spectra have been studied, and the C-H out-of-plane bending vibrations and the ¹H chemical shifts of the π -cyclopentadienyl group found to show a linear correlation with the Taft σ *-constants of R in (I) and with the Hammett σ -constants of X in (II).

INTRODUCTION

We previously reported the syntheses of the complexes π -C₅H₅Ni[P(n-C₄H₉)₃]X (X=anionic ligands)¹ and of some π -cyclopentadienylnickel derivatives containing sulfur ligands², but we did not carry out an analysis of their spectra. Recently spectroscopic studies of π -cyclopentadienyl groups in π -cyclopentadienylmetal compounds have been reported by several workers³⁻⁵, but there has been no quantitative investigation of the effect of SR ligands on the spectroscopic properties of the π -cyclopentadienyl group. We now describe the synthesis of a series of alkyl and *p*-substituted phenyl mercaptide complexes, and discuss the IR and NMR spectroscopic properties of the π -cyclopentadienyl group in these complexes.

RESULT AND DISCUSSION

The appropriate sodium mercaptide reacted readily in aqueous solution with $\{\pi-C_5H_5Ni[P(n-C_4H_9)_3]_2\}^+Cl^-$ to give complexes of types (I) and (II). In the case

of thioglycolic acid, the type (I) complex was synthesized by the reaction of thioglycolic acid with $\{\pi - C_5 H_5 Ni [P(n-C_4 H_9)_3]_2\}^+ Cl^-$ in the presence of triethylamine. The yields were comparatively high in most cases.

These complexes are soluble in benzene, n-hexane and n-pentane, but react slowly at room temperature with methylene chloride and carbon tetrachloride to give the known complex π -C₅H₅Ni[P(n-C₄H₉)₃]Cl. The physical properties of the complexes (I) and (II) are listed in Tables 1 and 2.

The IR spectra of the complexes (I) and (II) resemble that of π -C₅H₅Ni-[P(n-C₄H₉)₃]Cl except for the presence of additional absorptions characteristic of the R and C₆H₄X groups. It is obvious from the data that the C-H out-of-plane bending vibrations of the π -C₅H₅ group depend on the nature of the R groups in the complexes (I) or the X groups in the complexes (II), although the variations are small.

TABLE 1

R	М.р. (°С)	Color	$\frac{IR (cm^{-1})^a}{\gamma(C_5H_5)}$	¹ Η NMR (τ) ^b		
				$\overline{C_5H_5}$	R	
n-C ₄ H ₉	Oil	Green- brown	776	4.82 (s, 5H)	7.85 (t, $J_{\alpha,\beta}$ 5.5 Hz, 2H) ^e	
n-C ₃ H ₇	41-41	Green	776	4.82 (s, 5H)	7.85 (t, J _{z.6} 5.5 Hz, 2H) ^e	
C ₂ H ₅	53-54	Green	776	4.82 (s, 5H)	7.85 (q, $J_{a,6}$ 6.0 Hz, 2H) ^e	
CH3	Oil	Green- brown	777	4.85 (s, 5H)	8.20 (s, 3H)	
CH2C6H5	38 – 39'	Brown	778	4.84 (s, 5H)	2.35-3.10 (m) ^f , 6.70 (s, 2H)	
н	51-52	Brown	7 79	4.86 (s, 5H)	4.71 (s, 1H)	
C ₆ H ₅	51-52 ^d	Green	779	4.80 (s, 5H)	1.90–2.13 and 2.70–3.15 (m) ^f	
СН2СООН	77–79	Brown	780	4.74 (s, 5H)	7.97 (s, 2H)	
COCH3	67–68	Brown	782	4.68 (s, 5H)	7.55 (s, 3H)	

SOME PROPERTIES OF π -C₅H₅Ni[P(n-C₄H₉)₃]SR

^a Measured in Nujol mull. ^b Measured in C_6D_6 with TMS as internal reference, multiplicity of peaks: s, singlet; t, triplet; q, quartet; m, multiplet. ^c Ref. 2 gives 31.5–32.0°. ^d Ref. 2 gives 45–46°. ^e Signals of β , γ and δ hydrogens were overlapped by signals of P(n-C₄H₉)₃ protons. ^f Overlapped by signals of C₆D₆ protons.

ABLE 2

)ME PROPERTIES OF π -C₅H₅Ni[P(n-C₄H₉)₃]SC₆H₄X

	М.р. (°С)	Color	$\frac{IR (cm^{-1})^{\alpha}}{\gamma(C_5H_5)}$	¹ H NMR $(\tau)^{b}$			
				C_5H_5	SC ₆ H ₄	X	
СН3	49-50	Green	778	4.98 (s, 5H)	2.84 (d, Jo, 7.5 Hz, 2H), 3.44 (d, 2H)	7.90 (s, 3H	
	51–52	Green	779	4.95 (s, 5H)	2.622.83 and 3.13-3.42 (m, 5H)		
21	63-64	Green	782	4.91 (s, 5H)	2.61 (d, J _{a.m} 8.0 Hz, 2H), 3.29 (d, 2H)		
COCH3	7980	Brown	784	4.85 (s, 5H)	2.57 (d, Jem 9.5 Hz, 2H), 2.65 (d, 2H)	7.69 (s, 3H	
NO ₂	113114	Brown	792	4.81 (s, 5H)	2.38 (d, J _{o,m} 10 Hz, 2H), 2.52 (d, 2H)	•	

Aeasured in Nujol mull. ^b Measured in CS_2 using TMS as internal reference: multiplicity of peaks: s, single doublet; m, multiplet.

J. Organometal. Chem., 39 (1972)

al da galación

It has been claimed that the C-H out-of-plane bending vibration of the aromatic system is related to the π -electron density of the aromatic rings, a high value being indicative of a relatively low π -electron density⁶. This suggestion can be applied to the π -C₅H₅ ring, and it is known that the π -electron density of the π -C₅H₅ group in π -cyclopentadienylmetal compounds is closely related to the charge density on the transition metal³. On the other hand, Kreevoy and his co-workers⁷ have concluded that a linear relationship between the acid dissociation constants of mercaptans and the Taft σ^* -constants of the substituents depends on the inductive effects of the substituents. Thus we examined the relationship between the C-H out-of-plane bending vibrations of the π -C₅H₅ group and Taft σ^* -constants. As can be seen in Fig. 1, there is a good linear relationship, which indicates that the inductive effects of the R groups in the type (I) complexes affect the π -electron density in the π -C₅H₅ group by transmission through the sulfur-nickel bond. In Fig. 2, the wave numbers of the C-H out-of-plane bending vibrations are plotted against the Hammett σ -constants of the substituents of X in the type (II) complexes, and again there is a linear correlation. The C-H out-of-plane bending vibrations of the π -C₅H₅ group would be affected by transmission of the overall polar effect of the X group to the benzene ring via the sulfur-nickel bond.

J. Organometal. Chem., 39 (1972)

Fig. 3. Plot of chemical shift of π -C₅H₅ against σ^* for π -C₅H₅Ni[P(n-C₄H₉)₃]SR.

Fig. 4. Plot of chemical shift of π -C₅H₅ against σ for π -C₅H₅Ni[P(n-C₄H₉)₃]SC₆H₄X.

The NMR spectra of the complexes (I) and (II) show a signal at $\tau 8.30-9.25$ due to the P(n-C₄H₉)₃ protons and a sharp singlet at around $\tau 4.90$ due to the π -C₅H₅ protons. While in the type (I) complexes the signals of the R groups appear at the expected positions, in type (II) complexes the resonances of the phenyl protons appear as an AB doublet when X is *p*-COCH₃ or *p*-NO₂ and as an AX doublet when X is *p*-CH₃ or *p*-Cl (Tables 1 and 2). The ¹H chemical shifts of the π -C₅H₅ group are linearly related to the Taft σ^* -constants of R in the type (I) complexes and to the Hammett σ -constants of X in the type (II) complexes, as shown in Figs. 3 and 4, respectively.

We conclude that the inductive effect of the R groups and the overall polar effect of the X groups are transmitted through the sulfur-nickel bond to influence the π -electron density in the π -C₅H₅ ring.

EXPERIMENTAL

392

Complex $\{\pi - C_5 H_5 Ni [P(n - C_4 H_9)_3]_2\}^+ Cl^-$ was prepared as previously de-

J. Organometal. Chem., 39 (1972)

scribed⁸. All the mercaptans except 4-acetylphenyl mercaptan were commercial samples, and were used without further purification. 4-Acetylphenyl mercaptan was obtained by Overberger's method⁹. All the solvents were purified and degassed before use, and all experiments were conducted under dry nitrogen.

The Taft σ^* -constants of the R groups and the Hammett σ -constants of the X groups were taken from ref. 10.

IR spectra were recorded with Nujol mulls on a Perkin-Elmer model 125 spectrometer. NMR spectra were recorded on a JEOL-JNM-4H100 NMR spectrometer with tetramethylsilane as internal standard. Solvent effects were minimized by taking all measurements at approximately the same concentration (ca. 8% w/v).

Reaction of $\{\pi - C_5 H_5 Ni [P(n - C_4 H_9)_3]_2\}^+ Cl^-$ with sodium methyl mercaptide

An aqueous solution of $\{\pi-C_5H_5Ni[P(n-C_4H_9)_3]_2\}^+Cl^-$ (3 mmoles) was added to an aqueous solution of sodium methyl mercaptide (3 mmoles) at room temperature under dry nitrogen. Reaction occurred immediately and a brown oil was formed. This was extracted with benzene, and the benzene solution was dried over anhydrous calcium chloride. The benzene was removed under vacuum to leave a brown residue. Recrystallization from n-pentane gave 0.63 g (56% yield) of greenbrown oily product. (Found : C, 57.76; H, 9.50; S, 8.93. C₁₈H₃₅NiPS calcd.: C, 57.95; H, 9.39; S, 8.59%)

Reaction of $\{\pi - C_5 H_5 Ni [P(n - C_4 H_9)_3]_2\}^+ Cl^-$ with sodium ethyl mercaptide

Similarly, $\{\pi - C_5 H_5 Ni [P(n - C_4 H_9)_3]_2\}^+ Cl^-$ (3 mmoles) and sodium ethyl mercaptide (3 mmoles) gave 0.83 g (74% yield) of green crystals, m.p. 53-54°. (Found : C, 58.34; H, 9.09; S, 7.90. C₁₉H₃₇NiPS calcd.: C, 58.96; H, 9.56; S, 8.27%.)

Reaction of $\{\pi - C_5 H_5 Ni [P(n - C_4 H_9)_3]_2\}^+ Cl^-$ with sodium n-propyl mercaptide

 $\{\pi - C_5 H_5 Ni [P(n - C_4 H_9)_3]_2\}^+ Cl^- (3 \text{ mmoles}) and sodium n-propyl mercaptide}$ (3 mmoles) gave 0.85 g (72% yield) of green crystals, m.p. 41-42°. (Found : C, 59.89; H, 9.70; S, 8.59. C₂₀H₃₉NiPS calcd.: C, 59.89; H, 9.73; S, 7.98%).

Reaction of $\{\pi - C_5 H_5 Ni [P(n - C_4 H_9)_3]_2\}^+ Cl^-$ with sodium n-butyl mercaptide

 $\{\pi - C_5 H_5 \operatorname{Ni}[P(n - C_4 H_9)_3]_2\}^+ Cl^-$ (3 mmoles) and sodium n-butyl mercaptide (3 mmoles) gave 0.55 g (41% yield) of a green-brown oil. (Found : C, 59.96; H, 10.67. $C_{21}H_{41}$ NiPS calcd.: C, 60.79; H, 9.90%.)

Reaction of $\{\pi-C_5H_5Ni[P(n-C_4H_9)_3]_2\}^+Cl^-$ with sodium thioacetic acid $\{\pi-C_5H_5Ni[P(n-C_4H_9)_3]_2\}^+Cl^-$ (3 mmoles) and sodium thioacetic acid (3 mmoles) gave 1.13 g (86% yield) of brown crystals, m.p. 67-68°. (Found: C, 56.60; H, 9.37; S, 7.91. C₁₉H₃₅NiOPS calcd.: C, 56.90; H, 8.75; S, 8.00%.)

Reaction of $\{\pi - C_5 H_5 Ni [P(n - C_4 H_9)_3]_2\}^+ Cl^-$ with sodium 4-methylphenyl mercaptide ${\pi-C_5H_5Ni[P(n-C_4H_9)_3]_2}^+Cl^-$ (3 mmoles) and sodium 4-methylphenyl mercaptide (3 mmoles) gave 1.12 g (83% yield) of green crystals, m.p. 49-50°. (Found : C, 63.92; H, 8.59; S, 6.88. C₂₄H₃₉NiPS calcd.: C, 64.19; H, 8.69; S, 7.13%).

Reaction of $\{\pi - C_5 H_5 Ni [P(n - C_4 H_9)_3]_2\}^+ Cl^-$ with sodium 4-chlorophenyl mercaptide $\{\pi - C_5 H_5 Ni [P(n - C_4 H_9)_3]_2\}^+ Cl^-$ (3 mmoles) and sodium 4-chlorophenyl

J. Organometal. Chem., 39 (1972)

mercaptide (3 mmoles), gave 1.25 g (89% yield) of green crystals, m.p. 63-64°. (Found: C, 58.57; H, 7.85. $C_{23}H_{36}ClNiPS$ calcd.: C, 58.82; H, 7.69%.)

Reaction of {π-C₅H₅Ni[P(n-C₄H₉)₃]₂}⁺Cl⁻ with sodium 4-acetylphenyl mercaptide Similarly, but with recrystallization from n-hexane, {π-C₅H₅Ni[P(n-C₄H₉)₃]₂}⁺Cl⁻ (3 mmoles) with sodium 4-acetylphenyl mercaptide (3 mmoles) gave 1.11 g (77% yield) of brown crystals, m.p. 79-80°. (Found : C, 62.86; H, 8.23; S, 6.91. C₂₅H₃₉NiOPS calcd.: C, 62.93; H, 8.18; S, 6.71%.)

Reaction of $\{\pi - C_5 H_5 Ni [P(n - C_4 H_9)_3]_2\}^+ Cl^-$ with sodium 4-nitrophenyl mercaptide

Similarly, but with recrystallization from benzene/n-hexane, $\{\pi$ -C₅H₅Ni[P-(n-C₄H₉)₃]₂ $\}^+$ Cl⁻ (3 mmoles) and sodium 4-nitrophenyl mercaptide (3 mmoles) gave 1.30 g (87% yield) of brown crystals, m.p. 113–114°. (Found : C, 57.48; H, 8.26; S, 6.49. C₂₃H₃₆NNiOPS calcd.: C, 57.54; H, 7.52; S, 6.67%.)

Reaction of $\{\pi - C_5 H_5 Ni [P(n - C_4 H_9)_3]_2\}^+ Cl^-$ with thioglycolic acid in the presence of triethylamine

An aqueous solution of $\{\pi$ -C₅H₅Ni[P(n-C₄H₉)₃]₂ $\}^+$ Cl⁻ (3 mmoles) was added to an aqueous solution of thioglycolic acid (3 mmoles) in the presence of triethylamine (3 mmoles) at room temperature. A brown precipitate immediately formed. The mixture was extracted with benzene, and the benzene solution was dried over anhydrous calcium chloride. The benzene was removed under vacuum, and recrystallization from benzene/n-hexane gave 0.79 g (62% yield) of brown solid, m.p. 77–79°. (Found : C, 54.22; H, 8.56. C₁₉H₃₅NiO₂PS calcd. : C, 54.67; H, 8.39%.)

REFERENCES

- 1 M. Sato, F. Sato and T. Yoshida, J. Organometal. Chem., 31 (1971) 415.
- 2 M. Sato, F. Sato, N. Takemoto and K. Iida, J. Organometal. Chem., 34 (1972) 205.
- 3 R. B. King, Inorg. Chim. Acta, 2 (1968) 454.
- 4 A. N. Nesmeyanov, K. N. Anisimov, B. V. Loksin, N. E. Kolobova and Y. K. Makarov, Dokl. Akad. Nauk SSSR, 176 (1967) 182.
- 5 D. S. Field and M. J. Newlands, J. Organometal. Chem., 27 (1971) 213.
- 6 R. D. Kross, V. A. Fassel and M. Margoshes, J. Amer. Chem. Soc., 78 (1956) 1332.
- 7 M. K. Kreevoy, E. T. Happer, R. E. Duval, H. S. Wilgus, III, and L. T. Ditsh, J. Amer. Chem. Soc., 82 (1960) 4899.
- 8 M. Sato, F. Sato and T. Yoshida, J. Organometal. Chem., 27 (1971) 273.
- 9 C. G. Overberger and A. Lebovits, J. Amer. Chem. Soc., 78 (1956) 4792.
- 10 R. W. Taft in M. S. Newman, Steric Effects in Organic Chemistry, Wiley, New York, N.Y., Chap. 13.

J. Organometal. Chem., 39 (1972)